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The method of constructing a family of Lyapunov functions to investigate the stability “in the small” of a perturbed motion,
specified in the form of a law of motion of a mechanical system [1], which has also been used to construct generalized systems
possessing an asymptotically stable programmed motion {2}, is extended to generalized systems possessing asymptotically stable
programmed constraints. Examples of the use of this procedure in the problem of stabilizing the programmed manifold of a
manipulator on a moving base and to stabilize the programmed orientation of a pursuing body are presented. © 2002 Elsevier
Science Ltd. All rights reserved.

1. FORMULATION OF THE PROBLEM

Suppose the motions of a system are described by the equation
Ag(X, x,0)X = By(x,x,1)+ My(x,x,t)u (1.1)

where Ay and M, are (n x n) and (n X r) matrices, x and By are n-dimensional vectors and u is an
r-dimensional vector.

System (1.1) is more general compared with mechanical systems since, unlike them, the matrix 4,
may depend on X, cannot be symmetric and positive-definite but must be non-singular.

The problem entails finding expressions for the vector u(x, x, t) for which system (1.1) possesses
programmed constraints

0, (x,1)=0, W,(x,x,1)=0 (1.2)

which are asymptotically stable “in the large” where w,, ®, are specified k- and m-dimensional vector
functions and k + m < r. It is assumed that the vectors ®;, ®,, By and the elements of the matrices
Ay, M are bounded and continuously differentiable functions in a certain bounded domain G(x, ) when
t = ty which includes the manifold (1.2) and a certain neighbourhood of it.

Moreover, it is assumed that the determinants of the matrices MpM{, (dw,/0x)(dw,/dx)", (dw,/dx)
(30,/3x)”, which are Gram determinants, do not vanish in the domain G.

Remark. The concept of a programmed constraint was introduced by the author in his doctoral dissertation (1972)
and consists of the fact that a programme of motion can be specified as a law of motion or, in a more general
form, as the manifold (1.2), which is analogous to the equations of the constraints imposed on the constrained
mechanical systems. Unlike constrained mechanical systems, the phase states of the controlled system may or may
not satisfy Eqs (1.2) since the controlled system, generally speaking, is a free system while conditions (1.2) are
solely indicative of the fact that the manifold (1.2) must be integral for the equations of motion of the system. In
order to achieve this aim, the active controi forces acting on the system are chosen so that, when the initial states
of the system satisfy (1.2), the system constructed behaves in exactly the same way as the constrained system on
which constraints of the form of (1.2) have been imposed. The basic property of controlled systems and their
similarity with constrained mechanical systems is contained in this.

Note that a programme, which is specified in the form of a law of motion, is a special case of (1.2) when k = n.

Below, the quantities ®; and ®, will be taken as measures of the deviation of the motions (1.1) from
the manifold (1.2).
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2. CONSTRUCTION OF A SYSTEM WITH CONTINUOUS CONTROL

By virtue of (1.1), on differentiating the first equation of (1.2) twice with respect to time and the second
equation of (1.2) once, we obtain

= B,(x,x, t)+(a ) M(x,x,t)u
ox

®, =K (x,x t)+(aax ) M(x,x,t)u (2.1)

Here

dw ip ow ) . d ( ow )
'( )A""[(ax ]"d:ax
0w J0 dw -
K = ( 2) Ay'By+ ( 3 2) x+—dx—2; M=A;'M,
Multiplying both sides of Eqs (2.1) by the symmetric positive-definite £ x k and m X m matrices
A(x, t) and N(x, t) with bounded, continuous and continuously differentiable elements in the domain
G, we obtain
A(x,0)®; = B(x,x,1)+Q,; B=AB,, Q, =A(9w,/dx)"Mu
N(x,n®, = K(x,x,1)+0Q,; K=NK;, Q) =N(0w,/dx)"Mu (22)
In the first equation of (2.2), instead of @, we make the substitution
- f(w,1), f(0,0)=0 (2.3)
where f(w1, t) is an arbitrary k-dimensional vector function with bounded and differentiable elements
which admit of an infinitely small upper limit.

Multiplying the first equation of (2.2) scalarly by the vector y and the second equation of (2.2) by
the vector @,, and adding, we obtain

1d, . of of of | 1dA
5 5 (@INey +yA) =y {QI+B+A[8(DI) Y- Kam,) F+ a:] 2dt }+

| dN
K+~—
+(;o2(Q2 +K+ > wz) 2.4)

If the vectors Q; and O, are chosen in the form

_py- o YV, Y| 1
Q =-by-Fio -5~ A(aw,J”A[[am,) +az} 2dr’

1 dN
0 =—K"5—d‘t"(”2“Fzmz (2:5)
we obtain
—;—%{ =-y'Dy+ (f R +of I; )wl - 0; /0, (2.6)

where D, F), F, are symmetric, positive-definite matrices and V' = 0iNw, + y'Ay + 0iF,, is Lyapunov’s
function, which is constructed to be positive-definite for all y, ®;, w,, ¢ in the domain G and which admits
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of an infinitesimal upper limit. Consequently, when the function (f'F; + 01F/2)w, is negative-definite,
the right-hand side of equality (2.6) will be negative-definite with respect to y, ;, @, and, in this case,
the programmed manifold (1.2) will be asymptotically stable in the domain G. In particular, when
f = —,, vectors (2.5) have the form

. 1 dA
=-Dy~- o, -B-A®; - ——
Q y — Fy®, 1 2dty

| dN
=-FKw,-K-———0
103 200, > 2 22

Here, dA/dt, dN/dt is assumed to be bounded in G in the same way as dffdt.
Note that Q; and Q, are expressed in terms of the vector u by the equalities presented in (2.2), which
can be represented by the single (k + m)-dimensional vector equation
Q
! “ 2.7)

Qu=0Q;, Q=

AW, /3x)" Ag' M, 0
1) Q2

Nw, /9%)" Ag' M,

where Q is a ((k + m) X r)-dimensional matrix and Q is a (k + m)-dimensional vector.

The solution of Eq. (2.7) can be represented in the form of the sum of two components [3]:
u, = QA and u,, where u, satisfies the equation Qu, = 0 and A is a (k + m)-dimensional vector, which
is found from the equation Qu, = Q in the form [3]

A=(QQ)'Q
Consequently, the component u,, of the vector u is found in the form
u, = Q) 'Q (2.8)

If the component u, of the vector u is equated to zero, the vector u will have the form (2.8) and have
a minimum Euclidean norm [3]. In this case, by analogy with constrained mechanical systems, the
constraints (1.2) can be regarded as ideal.

3. ESTIMATE OF THE QUALITY OF THE TRANSIENT
Integrating both sides of Eq. (2.6) with respect to time, we obtain

J [mSszz +y"Dy —(f’F; o %)w.}dt ==V, (3.1)
]

This equality is an integral criterion of the quality of the transient. Being free to choose the matrices
D, F,, F5, N, A and the function f, it is possible to give the integrand and Lyapunov’s function the required

structure with the necessary weight elements.
When the actual numerical value of ¥} is specified, the equation

1
'2‘(“)501\/0)20 +YgAyp + @pFwy) =V (32)

in the (2k + m)-dimensional space @y, 09, Wy describes an ellipsoid, the surface of which is the
geometric locus of points possessing the following property. The integral criterion for the quality of
the transient (3.1) holds for motions which have started out from them, and the estimate of the quality
of the transient

J [m;Fzﬂ)z +)’TDy—(fTFi +af g‘)wl]d‘ < %Vo

o

holds for all initial values of G4, 019, 059 Within ellipsoid (3.2).
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4. CONSTRUCTION OF A SYSTEM WITH BANG-BANG CONTROL

Suppose system (2.2) satisfies the following conditions in the domain G
0V >|G6"), i=12,..k 0P >[GP], j=12...m

where G?) and G§2) are, respectively, the elements of the vectors

W _pea LY A2 ¥ LA
© _B+A(aco,] Y Al:(aa),J f+8tJ+2 ar’

which occur in expression (2.4), and GV and G§2) are the moduli of the elements of the vectors Q; and
@, in the case of bang-bang control.
Then, the possibility of bang-bang control

Q; =-0Vsigny, i=12,..k
sz = —-Qj(-z) Sign (1)'2]', ] = l, 29---7”’ (4'1)

follows from (2.4).

Here, the function V; = o;Nw, +y'Ay and, together with it, the vectors , and y vanish after a finite
time interval [4). This means that, after this time interval, the phase state of the system is brought into
the manifold

o, - f(w,N=0, w,=0 (4.2)

If the function f(wy, t) is chosen in such a way that the solution w; = 0 of the first equation of (4.2)
is exponentially stable in G, then the phase state of system (2.1) will contract with time to the
programmed manifold (1.2).

It now remains to express the vector u in terms of the quantities (4.1). To do this, the vectors Q; and
0,, occurring in Eq. (2.7), must be replaced by the vectors 04, Q5 with the elements

O =-0"signy,, i=12,..k

Q= —Q}z) signw,;, j=12,.,m

respectively.
In this case, Eq. (2.7) takes the form

Qu=Qe’gf
2

and the required Eq. (2.8), which has the minimum Euclidean norm, is expressed in the form
U= QT(QQT )-l Ql

Note that the expression for the component u, of the control u can be found in [5] in the form
u, = [E - Q'(QQ") " Q]W, where E is the identity matrix and W is an arbitrary vector function.

5. EXAMPLES

Stabilization of the programmed manifold of a manipulator on a moving base. Consider a manipulator,
consisting of » rectilinear elements T, (v = 1, 2, ..., n), located on a moving base [6]. Each element T,
rotates relative to the preceding element 7, _; around a circular cylinder O, _,. We place the centre of
the gripping device at the point O,, of the last element 7,, and we specify the plane of the gripping device
to be the plane of the unit vectors e, and k,,.
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We shall assume that rotation of the element T, around the hinge O, _ is achieved by means of an
electric motor, placed with its reducing gear train at this point. The first element of the manipulator is
connected to the point O of the base of the manipulator. The position of the body and base of the
manipulator relative to a fixed system of coordinates ogn( is determined by the law of motion ry(f) of
the point O and by the three Euler angles.

We impose two requirements in the programme for the motion of the gripping device: the motion
of the centre of the gripping device relative to the base must obey the specified law

0,0, =L(1); L(=L,(1)-r,(1) (5.1

where Li(¢), ro(f) are specified functions and the plane of the gripping device must be orthogonal to
the vector ey, that is,

T

epeo = 0, k;eo = 0 (5.2)

If the vector 030, is expressed in terms of the vectors I, = 0,_,0,, then condition (5.1) takes the
form

2 L-Ln=0 (5.3)
v=1
The motions of the manipulator are specified by Lagrange’s equations

—— = ~Cx+ Myu 5.4
dt ox  ox oAp) 0 (54)
where x is an n-dimensional vector of the generalized coordinates and the angles of rotation
¢, (v = 1, ..., n) of its elements, u is the n-dimensional vector of the control signals, Q(p) is the vector
of the generalized gravitational forces, T is the kinetic energy of the manipulator

T= %iTAo(x,t)ﬂ BT (x,0)% +bo(x, 1)

C= diag(c,klz,czk%,...,c,,k,f ) Mgy =diag(a\ky,aks,...,a,k,)

¢, the coefficients of resistance on the shaft of the motors, &, are the transmission numbers of the reducing
gear trains and q, are the coefficients of proportionality between the control moments of the motors
and the control signals u,.

Equation (5.4) can be represented in the form of (1.1)

Ag(x, 1)k = By(%,x,1) + Myu (5.5)
where
1 ., 04, . dA, ob . db db
B, =—xT—0 =0 T _ 20
0 2x dx x+( dt +8x C)x dt * ox +2p)

Starting out from requirements (5.3) and (5.2), we will represent the programmed manifold (1.2) in
the form of a five-dimensional vector

ok, =0 (5.6)

with elements
;= k,’l: il lye, -L(t)]' i=1,2,3; ©,=ere; 0s5=k,e (5.7
v=

where k; are the unit vectors for the axes of the system of coordinates oon{ and e, are the unit vectors
of the vectors 1,.
Differentiating equalities (5.7) twice with respect to ¢ using Poisson’s formulae
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n=l n=l

Ik,, =(w0+ En; w;)xkp

n=l

\4 n
év=(w0+ > w{,)xev, e, =[w0+ p) w;‘)xep

where oy = %,j, and j, are the unit vectors of w;, we obtain Eq. (2.1) in the form [6]

D= ATAg' By + Afk — ég + AT Ay' Mu

(5.8)
Here A, is an n x 5 matrix with elements
. T
a,, =(j\, x“a In) k;,, i=123
a, =y Xe,)7eq, as, =(J, xk,)ep
¢y is a vector with elements
cd =[L(x)- f;l (o2 xlv):lfk,-, i=1,23
v=
) = (o xe,) ey —eréy, cf =—(uy X k,)"eo - k&
and oy is the angular velocity of the base..
Multiplying (5.8) by the symmetric, positive-definite 5 x 5 matrix A(x, t), we obtain
Aw=B(x,x,t)+Q (5.9)
where
B=A(A[AgBy + Al % - éy), O=AATMu, M=A;'M,
Equation (5.9) is the first of the equations of (2.2).
Consequently, Eq. (2.7) for determining the vector u has the form
AA'Mu=Q (5.10)
where
Q=-Dy- Fw—B-A(;—é)ry+,4[(%)1f+g—ft—)ry]—-%%y

D and F are arbitrary symmetric, positive-definite matrices and f(w, ) is an arbitrary vector function
with bounded and differentiable elements, which is chosen in such a way that the function (f'F + ©"F/2)w
is negative-definite.

The solution of Eq. (5.10) can be represented in the form of (2.8)
u=QNQAN)'Q Q=AATM

In this case, the Euclidean norm of the vector of the control u will be a minimum.
When necessary, a bang-bang control of the system can be constructed using the algorithm presented
in Section 4.

Note that, in this case, the quality factor of the transient (3.1) has the form

oo

fl:yTDy—(fT+mT-§w):|dt=—;-Vo, Vo =Vi(ty)
fo
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Stabilization of the programmed orientation of a pursuing body. Consider a rigid body rigidly associated
with the fixed system of coordinates cxyz. We construct the principal vector of the control forces i, in
such a way that the centre of mass of the body ¢ moves along the pursuit curve behind the point o,
which is being pursued, when it moves in an arbitrary way ry(f) relative to the inertial system of
coordinates ox,y:21 [7]. Here, the vector of the control moments iz; must be such that one axis of the
body, cz, for example, tends asymptotically to occupy the direction co. Consequently, the programmed
orientation of the body in this case can be specified by the expressions

o =K, (t-r)=0, 0)=k;-v=0, i=12 (5.11)

where k;, k; are the unit vectors of the axes cx and cy, () is the sign of a scalar product, r is a radius
vector and v is the vector of the absolute velocity of the centre of mass of the body.

It is well known that the motion of the centre of mass in the inertial system of coordinates oxy12,
and the rotational motion of the body about the centre of mass in the axes of the fixed system of
coordinates cxyz are described by the equations

Io=(loxw)+M, +1,
mv=_+i, (5.12)

where [ is the inertia tensor of the body at the point ¢, w(p, g, r) is the instantaneous angular velocity
of the body, p, g and r are the projections of  onto the cx, cy and cz axes, m is the mass of the body,
M. is the moment of the specified forces with respect to the centre of mass c, f is the principal vector
of the specified forces, o is the principal moment of the control forces with respect to ¢ and u, is the
principal vector of the control forces.

We represent Eq. (5.12) in the form

w=I"loxw)+M,]+u;; v=f/m+u,
w, =l-lﬁ|, u, =ﬁl/m (5_13)
The problem can now be formulated as follows: it is required to construct analytic expressions for the
vectors u; and u; in such a way that the manifold (5.11) is a stable programmed manifold of system (5.13).

The solution of the problem is as follows.
Differentiating expression (5.11) with respect to time, we obtain, using Egs (5.13),

ol i x;  dob i A .
dt2‘=BI+Q]’ 71=K1+Q2, i=1,2 (5.14)

where

Bl =¢]I"'[(Joox m)+M.]-kiT%f+(l'o -1 wx (0xk)]+ (@ - V) (@xk;)+ ik,

K{=k7~'—f+vT(mxk,.)
m
c; =k, x(ry~r)
0f =cfu, -kju,, 0; =kfu,

andr, v, k;, ¢;, », Ms, f, u,, u, are column vectors.
The system of equations (5.14) can be represented in the vector form

& =B +0, M=K +0Q, (5.16)

l B2 . 1 }
v B= 2l Q= le
B; o

where
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Multiplying Egs (5.16) by the sign-definite, symmetric matrices 4 and N, we obtain
A®, =B+Q,, No,=K+0Q, (5.17)
where
B=AB, K=NK,, 0 =AQ, @ =NQ, (5.18)

Taking the notation of (5.18) into account, expressions (5.15), which contain the required vectors u;
and my, can be represented in the form

Qu=A"'0, Qu=N"Q, (5.19)

|

where

o ¢ a3~k ~kp kg3

Cu Cn O —ky —ky —ky

0 0 0 Kk, Ky ks
0 0 O ky ky ky

(5.20)

2:

i1, Cia» C;3 are the elements of the vectors ¢;, and &;;, &;; and k;; are the elements of the vectors k;.
In Eq. (5.17), instead of ;, we make the substitution

y=o, - f(w,n, f(0,H=0 (5.21)

where f(w;, t) is an arbitrary two-dimensional vector function with bounded and differentiable elements,
which admit of an infinitesimal upper limit.

Multiplying the first equation of (5.17) scalarly by the vector y and the second equation by the vector
o, and adding, we obtain Eq. (2.4).

If the vectors O, and Q, are chosen in the form (2.5), we then obtain Eq. (2.6).

Note that O, and Q, are expressed in terms of the 6-dimensional vector u by Eqs (5.19), which can
be represented by a single 4-dimensional vector equation of the form (2.8), where Q is a 4 x 6 matrix
of the form

Q

Q=
QZ

; Q=

A7
NQ,

where Q;, Q, are the matrices (5.20).
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